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field is

- kX —X) _,
A=fffVJ(x )%dm

From measurements in an xy-plane, say, to the right of the region
V, the reconstructed field will provide the valid field at every
point to the right of ¥. But the reconstructed field in an xy-plane
that passes through V is given by

_ . €XD (ik,n])? - Fc"]) &

AR(R'):/./'/V;«:)J()C) |5€_£,|
) e

_k ,”_ 4
ff P

which is quite different from the actual field A(X).

The purpose of reconstructing the field is to construct the
source distribution, which in turn provides desired information
regarding the electromagnetic image of the scattering object.
Even though the reconstructed field inside the scattering object is
quite different from the actual field, the image obtained from the
proposed technique must still represent some kind of dielectric
characteristics of the scattering object. However, it is not clear
exactly what characteristics it represents, and more theoretical
study is needed in this regard.

Finally, we remark that active research on microwave biologi-
cal imagery using a water-imthersed microwave atray [4] is also
being performed at Walter Reed Army Institute of Research and
the Johns Hopkins University Applied Physics Laboratory.
Several approaches for obtaining the image from a set of limited
measurements are being considered [5], [6]. Here, one of these
approaches is briefly described. First, it is shown that the scattered
field is equal to one that is produced by an effective charge-cur-
rent distribution (., , eff) with

Pefp = =V (*‘X—Xxm P) and  J = X Xn XXm %?

where x and P are, respectively, the dielectric susceptibility and
electric polarization inside the target, and Y, is the dielectric
susceptibility of water. Secondly, the following theorem of inverse
scattering is proved: Let J; (a four-component vector) represent
the charge-current distribution of the scattering target, and 4,
(also a 4-vector) the electric-magnetic potential of the scattered
field; also, let J, be an arbitrary localized 4-vector field and A4,
be the 4-vector solution of the equation (V2 + k)4, (¥)=
—@mn/c)J, (X), then

fffju()‘c’)%\(f)d5c’=fffA“()?)'Jy(5c’) %

where the products are the 4-vector scalar products and the
integrations are over the entire space. Equation (3) turns out to
be a very useful theorem for inverse scattering problems, espe-
cially in obtaining an image of a target from limited measure-
ments of the scattered field. If measurements on A4 (X) are
carried out at a set of points {X,}, and one takes J, (¥)=
Y, J8(%— x,), then the left-hand side of (3) is completely ob-
tainable from the limited measurements. To be more explicit, if
one measures only the y-polarization of the scattered electric
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field E () at {X,}, then take J, = §¥, J,8(% —

ZJE(x,,)— fffA [ (X Xxm>q

+v(v-l_x—x’"}3)] dx (4)

where E,(X,) is the measured y- component of the electric field
at x,, k the wavenumber of the microwave in water, ¢, the
d1electr1¢ constant of water, P the polarization inside the target
induced by the incident wave, ¢ the speed of light, and A4, (X) is
given by 2, pJexp(ilX — X, /|X — X,|. It is possible to select a
set of weights {J,} such that the resulting weighted field 4, (X)
in the region occupled by the target is very small, except for a
spatially sharp peak at a focal point X,. Then the integral in the
right-hand side of (4) is approximately equal to the value of

L[krgn(x~xm)f,+v(vix—xm;,)]
€ X X

evaluated at X, where X, is a point inside the target.

The approach described above will require longer data process-
ing time than the one proposed by Bolomey er al., mainly
because the calculation of the field A4, (X) from {J,} is not a
simple Fourier transform. It is hoped that some type of fast data
processing algorithm similar to the fast Fourier transform may be
developed in the near future for the purpose proposed here.

X,), so (3) gives
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clarification shows that his propositions are founded on con-
tradictory suppositions and equivocation. If not for rigor and
consistency, what is the excuse for using mathematics? The issues,
however, are not merely ones of purity and semantics—although
precision in terminology is essential to meaningful communica-
tion—but there is also an important practical consideration.

In the strict sense, in a proper variational form, eigenvalues are
themselves the stationary values that the pertinent functional can
take. It is this feature that makes the variational form useful
sometimes as an unambiguous approximation method, requiring
no foreknowledge of exact solutions to a problem. If it exists, an
eigenvalue is a well-defined limit providing ‘the user with a
warning when his trial functions drift away from their mark, at
least in principle. Even here, however, the method is practical
only when the set of eigenvélues are not too closely spaced. In
contrast, Lindell’s computational procedure is ambiguous in
principle because it is founded on a sufficient, but not necessary,
condition. By whatever name one chooses to label the parameter
A, as quadratic roots of the expression (f, L(A)f)=0 they do
not even guarantee that f is always a solution to L(A)f =0,
except possibly in those cases when the number zero is an
eigenvalue of L(A) in the strict sense discussed in the Comment.
Such might be the case in problems dealing with cutoff frequen-
cies, as these correspond to vanishing wavenumbers. So long as
there is ambiguity, the user is left with an uncomfortable uncer-
tainty, unless the calculations can be compared with known exact
solutions. This is self-defeating. When criteria for selection and
accuracy are not given, the usefulness of a method is severely
compromised. It is not surprising that Lindell’s procedure should
yield pleasing results sometimes, but still in others it would not.
The so-called evidence is misleading because, so far, it consists of
application to problems whose exact solutions are known, but no
indication is given on how trial functions were selected. In any
case, no computation can justify a theory founded on conceptual
erTors.

Turning to the author’s clarifications, we observe that deleting
the boundary terms in the revised form does not change the
argument of fallacy. The statements concerning continuous and
discrete spectra are irrelevant and inaccurate, as they confuse
admissibility of a subset of functions, as solutions to a particular
boundary value problem, with existence of functions in the larger
parent set comprising the null space of the pertinent operator.
The author falsely concludes that solutions of L(A)f = 0 have no
derivatives df/dA if such solutions are admissible only for dis-
crete values of A. Yet, this contradicts his next supposition that f
changes continuously by &f whenever A changes by 6. To counter
this, the function sin3x at A=3 is an admissible solution to
well-known boundary value problems. It certainly has the deriva-
tive xcos3x evaluated at A =3. It appears that the author is
confusing values of derivative with the derivative operation, and
once again he hinges his argument on whether or not (f, L'(A)f)
vanishes. In so doing, it also appears that the author is not
appreciating the meaning of the zero function as an element in
the range set of a mapping. In the equality L(A)f = 0, the right
member is the zero function which has zero derivatives.

The main inconsistency, however, lies in interpretations of
functionals and stationarity. The expression F(A; f)=(f, L(A)f)
is a functional insofar as f is concerned, but it is also a function
where the parameter A is concerned. That is, the real or complex
number F(A; f) to which a function f(r) is mapped does depend
also on the value of A. However, the concepts of extremization of
functionals and functions are significantly different. When both
f(r) and X are to be varied— f(r) deviating by a function §f(r)
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and A deviating by a number 86X —and given that L(A) is self-
adjoint in the accepted sense, then the variation of F is properly

IF
8F=2(8f, L(\)f)+ 53-8\

Moreover, if for any reason f is dependent on A, then

OF _ (9f : of

= (gr L)+ (rror L0 )

Here, the derivative dF/3d\ corresponds to A(A) in the first
Comment, save for the fact the boundary terms are properly
deleted. Obviously, if f(r) is arbitrarily assumed to be indepen-
dent of A, then the only pertinent term is (f, L’f), as Lindell
assumes even in his revised version. The critical point, however, is
the fact that f(r) is not arbitrary, but it is constrained to be a
solution of L(A)f(r)=0. Even without boundary constraint,
f(r) becomes dependent on A. It follows that

LOf+ L)L =0,

Consequently, when L(A)f = 0, then d F/ X also vanishes, which
at once implies that § F vanishes for any nonzero 8A, as argued
before, even if f is assumed to be independent of A. But, this is to
be expected because F(A; f) =0 is trivially the zero eigenvalue of
L(A) in the proper sense which is a proper stationary value of
(f, L(A)f). The above considerations can be readily demon-
strated by taking L(A)=d?*/dx>+ A on the domain {f(x):
f(©®) =0,f’(a)=Af(a)}. Exact solutions of this problem exist for
the roots of tanAa =1.

In Lindell’s proposition, however, the symbol A is employed in
two different senses. First, it is tacitly treated as a free parameter,
as above, in the attempt at proving stationarity. Later, it is
defined as the functional A = J(f), generated as roots of the
expression (f, L{A)f)=0. So far, the author’s arguments have
not proven that 8J( f) actually vanishes when L(A)f = 0. In light
of the above and previous arguments, and in light of the counter
example given in the first Comment, it is seriously doubtful that
the roots J( f) actually achieve extremal values when L(A)f = 0.
The extremal property, it is recalled, has significant bearing on
practical usefulness. Nevertheless, it appears that the author
missed the point of the counter example, as the boundary condi-
tion is irrelevant to the ambiguity it illustrates. In any case, the
second example given above should leave no doubt.

The author has attempted to present the engineering and
scientific communities with a general mathematical theory. A
solitary counter example is usually sufficient to negate the sweep-
ing generality of any assertions contained in an exposition that
pretends to be rigorous and mathematical.

Reaction® to Response to Reply to Comments on “Variational Meth-
ods for Nonstandard Eigenvalue Problems” by Ismo V. Lindell*

It is with a justifiable fear that the present discussion [1]-[3]
does not arouse any interest in the readers of this TRANSACTIONS
that I wish to react to the latest Response by Dr. Gabriel. In my
view, the discussion cannot end with the Response, since it does
not represent the final truth in this matter.

The main disagreement in my and Dr. Gabriel’s views concerns
the dependence of f on A in the functional equation F(A; f)=0.
Let us consider the problem in terms of four demonstrations.

1) To obtain a fresh view, let us consider the problem back-
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wards. Assume that f and A only are dependent through the

equation (f, L(A)f)= 0. Hence, the following equation is valid
between 6A and 6f:

281, 1f) + A (£, () ) =0.

This means that if a solution to F= 0 is found such that §A =0
for any 6f, we must have Lf = 0 with the presumptions made in
{1] concerning the inner product. Hence, for the functional equa-
tion F =0, if we find a solution A which does not change when
we change the function f by any small function, then A and f must
be a solution of L(A)f = 0. There is no other hidden dependence
involved in this reasoning.

2) Consider the standard eigenvalue problem, which is a spe-
cial case of the present, more general formulation. The resulting
functional A = (f, Lf)/(f, f) is proven stationary in any textbook
without any additional assumption of dependence of f on A. This
can also be written in an equation form as (f, Lf)+A(f,f)=0
or (f, L(A\)f)=0 with L(A)= L+ A, whence the method sug-
gested by Dr. Gabriel does not produce the normal result in this
case.

3) Let us consider a similar example for functions. The equa-
tion F(x,y)=(x—12?+ y?2~1=0 describes a circle with a
point at x =1, y =1. To study neighboring points, we set x =1+
dx and y =1+ 8y. Although y =1 depends on x =1, we do not
take this dependence into account when writing the equation for
the differentials: (8x)* +28y = 0, which shows us that 8y is of
second order with respect to 8x.

4) Take the example given by Dr. Gabriel, with L(A)=
d?/dx?+ N and B()A) defined by the two endpoint conditions
f@=0,f’(a)—Af(a)=0. This leads to the following functional
equation:

a 7’ 2 ’
FOuf) = (= (£ X7?) dx = Af2(a) =27 (0)1 (0) =0
1)
which is of second degree in A and easily solvable. To prove the

stationarity, one can set 8A =0 and take a variation in f. After
some partial integrations we readily obtain

2 j(;asf(f”+Azf)dx—28f(a)(f’(a)—>\f(a))
~2/(0)8f(0)=0 (2)
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from which the original equations are seen to result if (2) is valid
for arbitrary 8f. It is no matter if we consider variation in (1) or
in the solution functional A(f), if only we treat A and f indepen-
dent.

As a summary, it is observed that there seems to be no use in
pursuing Dr. Gabriel’s path through the jungle of mathematical
semantics since it does not produce any useful method, whereas
that given in [1] does.
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Corrections to “A Planar Quasi-Optical
Subharmonically Pumped Mixer Characterized by
Isotropic Conversion Loss”

KARL D. STEPHAN, MEMBER, IEEE, AND TATSUO ITOH,
FELLOW, IEEE

In the above paper,' the antenna patterns in Figs. 8 and 9 were
transposed. Fig. 8 is actually the H-plane pattern and Fig. 9 is the
E-plane pattern.
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