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field is

,4= J-/@’) exp (z~,,J~– .:’1)~t,,
11-Z’I “

From measurements in ah xy-plane, say, to the right of the region

V, the reconstructed field will provide the valid field at every

point to the right of V. But the reconstructed field in an xy-plane

that passes throtigh V is given by

which is quite different from the actuaf field A (.2).

The purpose of reconstructing the field is to construct the

source distribution, which in turn provides desired information

regarding the electromagnetic image of the scattering object.

Even though the reconstructed field inside the scattering object is

quite different from the actuaf field, the image obtained from the

proposed technique must still represent some kind of dielectric

characteristics of the scattering object. However, it is not clear

exactly what characteristics it represents, and more theoretical

study is needed in this regard.

Finally, we remark that active research on microwave biologi-

cal imagery using a water-immersed microwave array [4] is also

being performed at Walter Reed Army Institute of Research and

the Johns Hopkins University Applied Physics Laboratory.

Severaf approaches for obtaining the image from a set of limited

measurements are being considered [5], [6]. Here, one of these

approaches is briefly described. First, it is shown that the scattered

field is equal to one th~t is produced by an effective charge-cur-

rent distribution ( pCff, Jeff ), with

where x and ~ are, respectively, the dielectric susceptibility and

electric polarization inside the target, and x,,, is the dielectric

susceptibility of water. Secondly, the following theorem of inverse

scattering is proved: Let .J, (a four-component vector) represent

the charge-current distribution of the scattering target, and A,

(also a q-vector) the electric-magnetic potentiaf of the scattered

field; also, let .lW be an arbitrary localized 4-vector field and A,,

be the 4-vector solution of the equation (v 2 + kz)~ ~ (.7) =

– (4 T/c) J.,(1), then

where the products are the 4-vector scalar products and the

integrations are over the entire space. Equation (3) turns out to

be a very useful theorem for inverse scattering problems, espe-

cially in obtaining an image of a target from limited measure-

ments of the scattered field. If measurements on A, ( .?) are

carried out at a set of points {2,,}, and one takes J,,(2)=

X,7.@(2 – x,,), then the left-hand side of (3) is completely ob-

tainable from the limited measurements. To be more explicit, if

one measures only the y-polarization of the scattered electric

(+’ ‘x-xm- )1~P dz (4)

where -Ep(;. ) is the measured y-component of the electric field

at ,?,l, km the wavenumber :f the mi&-owave in water, cm the

dielectric constant of water, P the polarization inside th~ target

induced by the incident wave, c the speed of light, and A ~ ( Z) is

given by >,, j~,exp ( i 12 – i?,,1)/ l,? – 2M1. It is possible to select a

set of weights { ~1 } such that the resulting weighted field A,, ( .i)

in the region occupied by the target is very small, except for a

spatially sh@ peak at a focal point if. Then the integral in the

right-hand side of (4) is approximately equal to the value of

W+)’+’(’%-)]
evaluated at .Zf, where i?f is a point inside the target.

The approach described above will require longer data process-

ing time than the one proposed by Bolomey et al., mainly

because the calculation of the field A ~ ( i!) from {~, } is not a

simple Fourier transform. It is hoped that some type of fast data

processing algorithm similar to the fast Fourier transform maybe

developed in the near future for the purpose proposed here.
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clarification shows that his propositions are founded on con-

tr~dictory suppositions and equivocation. If not for rigor and

consistency, what is the excuse for using mathematics? The issues,

however, are not merely ones of purity and semantics-although

precision in terminology is essential to meaningful communica-

tion-but there is also an important practicaf consideration.

In the strict sense, in a proper variational form, eigenvalues are

themselves the stationary values that the pertinent functional can

take. It is this feature that makes the variational form useful

sometimes as an unambiguous approximation method, requiring

no foreknowledge of exact solutions to a problem. If it exists, an

eigenvalue is a well-defined limit providing ‘the user with a

warning when his ttial functions drift away from their mark, at

least in principle. Even here, however, the method is practical

only when the set of eigentiues are not too closely spaced. In

contrast, Linden’s computational procedure is ambiguous in

principle because it is founded on a sufficient, but not necessary,

condition. By whatever name one chooses to label the parameter

A, as quadratic roots of the expression (~, L(A)~) = O they do

not even guarantee that ~ is always a solution to L( A)f = O,

except possibly in those cases when the number zero is an

eigenvalue of L(A) in the strict sense discussed in the Comment.

Such might be the case in problems dealing with cutoff frequen-

cies, as these correspond to vanishing wavenumbers. So long as

there is ambiguity, the user is left with an uncomfortable uncer-

tainty, unless the calculations can be compared with known exact

solutions. This is self-defeating. When criteria for selection and

accuracy are not given, the usefulness of a method is severely

compromised. It is not surprising that Linden’s procedure should

yield pleasing results sometimes, but still in others it would not.

The so-called evidence is misleading because, so far, it consists of

application to problems whose exact solutions are known, but no

indication is given on how triaf functions were selected. In any

case, no computation can justify a theory founded on conceptual

errors.

Turning to the author’s clarifications, we observe that deleting

the boundary terms in the revised form does not change the

argument of fallacy. The statements concerning continuous and

discrete spectra are irrelevant and inaccurate, as they confuse

admissibility of a subset of functions, as solutions to a particular

boundary value problem, with existence of functions in the larger

parent set comprising the null space of the pertinent operator.

The author falsely concludes that solutions of L(A)~ = O have no

derivatives df/c?A if such solutions are admissible only for dis-

crete values of A~Yet, this contradicts his next supposition that f

changes continuously by 8f whenever A changes by 8A. To counter

this, the function sin3x at A = 3 is an admissible solution to

well-known boundary value problems. It certainly has the deriva-

tive x cos 3x evaluated at A = 3. It appears that the author is

confusing values of derivative with the derivative operation, and

once again he hinges his argument on whether or not (f, L’(A) f )

vanishes. In so doing, it also appears that the author is not

appreciating the meaning of the zero function as an element in

the range set of a mapping, In the equality L(A)f = O, the right

member is the zero function which has zero derivatives.

The main inconsistency, however, lies in interpretations of

functional and stationarity. The expression F(A; ~) = ( f, L(A)f )

is a functional insofar as f is concerned, but it is also a function

where the parameter A is concerned. That is, the real or complex

number F(A; f ) to which a function f Q-) is mapped does depend

also on the value of A. However, the concepts of extremization of

functional and functions are significantly different. When both

f(~) and A are to be varied-f(~) deviating by a function 8f(?)

and A deviating by a number 8A —and given that L(A) is self-

adjoint in the accepted sense, then the variation of F is properly

8F=2(8f,L (A) f)+~8A.

Moreover, if for any reason f is dependent on A, then

aF

-m=(;{, L(A) f)+(f, L’(A) f+ L(A)#).

Here, the derivative aF/ aA corresponds to A(A) in the first

Comment, save for the fact the boundary terms are properly

deleted. Obviously, if f(~) is arbitrarily assumed to be indepen-

dent of A, then the only pertinent term is (f, Uf ), as Linden

assumes even in Iis revised version. The critical point, however, is

the fact that f(~) is not arbitrary, but it is constrained to be a

solution of L(A) f (~) = O. Even without boundary constraint,

f(?) becomes dependent on A. It follows that

L’(A) f+ L(A)#=O,

Consequently, when L(A)f = O, then dF/dA also vanishes, which

at once implies that 8F vanishes for any nonzero 8A, as argued

before, even if f is assumed to be independent of A. But, this is to

be expected because F(A; f ) = O is trivially the zero eigenvalue of

L(A) in the proper sense which is a proper station~ value of

(f, L(A) f). The above considerations can be readily demon-

strated by taking L(A)= d2/dx2 + A2 on the domain {f(x):

f(0) = O,f ‘(a) = Af ( a)}. Exact solutions of this problem exist for

the roots of tan Xa =1.

In Linden’s proposition, however, the symbol X is employed in

two different senses. First, it is tacitly treated as a free parameter,

as above, in the attempt at proving stationarity. Later, it is

defined as the functional A = Y( f ), generated as roots of the

expression (f, L( A)f) = O. So far, the author’s arguments have

not proven that N’(f) actually vanishes when L(A) f = O. In light

of the above and previous arguments, and in light of the counter

example given in the first Comment, it is seriously doubtful that

the roots J(f) actually achieve extremaf values when L(A) f = O.

The extremal property, it is recalled, has significant bearing on

practicaf usefulness. Nevertheless, it appears that the author

missed the point c~f the counter example, as the boundary condi-

tion is irrelevant to the ambiguity it illustrates. In any case, the

second example given above should leave no doubt.

The author has attempted to present the engineering and

scientific communities with a general mathematical theory. A

solitary counter example is usually sufficient to negate the sweep-

ing generality of any assertions contained in an exposition that

pretends to be rigorous and mathematical.

Reuction3 to Response to Reply to Comments on “Variational Meth-

ods for Nowundard 171genvalue Problems” ly Isrno V. Lindel[4

It is with a justifiable fear that the present discussion [1]-[3]

does not arouse any interest in the readers of this TRANSACTIONS

that I wish to react to the latest Response by Dr. Gabriel. In my

view, the discussion cannot end with the Response, since it does

not represent the final truth in this matter.

The main disagreement in my and Dr. Gabriel’s views concerns

the dependence off on A in the functional equation F(A; f ) = O.

Let us consider the problem in terms of four demonstrations.

1) To obtain a fresh view, let us consider the problem back-
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wards. Assume that f and A only are dependent through the

equation (f, L(A) f) = O. Hence, the following equation is valid

between 13A and 8f:

2(13f, Lf)+8A(f, L’(A) f)=o.

This means that if a solution to F= O is found such that 8A= O

for any i3f, we must have Lf = O with the presumptions made in

[1] concerning the inner product. Hence, for the functional equa-

tion F = O, if we find a solution A which does not change when

we change the function f by any small function, then A and f must

be a solution of L(A) f = O. There is no other hidden dependence

involved in this reasoning.

2) Consider the standard eigenvalue problem, which is a spe-

ciaf case of the present, more general formulation. The resulting

functional A = (f, Lf )/( f, f ) is proven stationary in any textbook

without any additional assumption of dependence off on k. This

can also be written in an equation form as (f, Lf ) + A( f, f ) = O

or (f, L(A)f ) = O with L(A)= L+ AI, whence the method sug-

gested by Dr. Gabriel does not produce the normal result in this

case.

3) Let us consider a similar example for functions. The equa-

tion F(x, y) = (x –1)2 + y2 –1 = O describes a circle with a

point at x = 1, y = 1. To study neighboring points, we set x=1+

8X and y =1 + 8y. Although y = 1 depends on x =1, we do not

take this dependence into account when writing the equation for

the differentials: (8x) 2 + 28y = O, which shows us that 8-Y is of

second order with respect to 8x.

4) Take the example given by Dr. Gabriel, with L(A)=

d2/dx2 + A2 and B(A) defined by the two endpoint conditions

~(0) = O,f ‘(a)– Af(a) = O. This leads to the following functional

equation:

F’(A; f)=~a(- (f ’)2+ A2f2)dx +Af2(a)-2f’(0)f (0)=0

(1)

which is of second degree in A and easily solvable. To prove the

stationarity, one can set 8A = O and take a variation in f, After

some partial integrations we readily obtain

2Ja8f(f’’ +A’f)dx -28f(a)(f’(a)- Af(a))

- 2f (o) c? f’(o) = o (2)

from which the original equations are seen to result if (2) is valid

for arbitrary 8f. It is no matter if we consider variation in (1) or

in the solution functional X(f), if only we treat A and f indepen-

dent.

As a summary, it is observed that there seems to be no use in

pursuing Dr. Gabriel’s path through the jungle of mathematical

semantics since it does not produce any useful method, whereas

that given in [1] does.
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Corrections to “A Planar Quasi-Optical

Subharmonically Pumped Mixer Characterized by

Isotropic Conversion Loss”

KARL D. STEPHAN, MEMBER, IEEE, AND TATSUO ITOH,

FELLOW. IEEE

In the above paper,l the antenna patterns in Figs. 8 and 9 were

transposed. Fig. 8 is actually the H-plane pattern and Fig. 9 is the

E-plane pattern.
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